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INTRODUCTION TO DATA STRUCTURE 
 

 

1.1 NEED FOR DATA STRUCTURE 

As applications are getting complexed and amount of data is 

increasing day by day, there may arise the following problems: 

1. Processor speed 

To handle very large amount of data, high speed processing is required, 

but as the data is growing day by day to the billions of files per entity, 

processor may fail to deal with that much amount of data. 

2. Data Search 

Consider an inventory size of 106 items in a store, If our application 

needs to search for a particular item, it needs to traverse 106 items 

every time, results in slowing down the search process 

3. Multiple requests 

If thousands of users are searching the data simultaneously on a web 

server, then there are the chances that a very large server can be failed 

during that process. In order to solve the above problems, data 

structures are used. 

 
1.2 DEFINITIONS 

Data structure is representation of the logical relationship existing 

between individual elements of data. In other words, a data structure is a way 

of organizing all data items that considers not only the elements stored but 

also their relationship to each other. 

 Data Structure can be defined as the group of data elements which 

provides an efficient way of storing and organizing data in the 

computer. 

 Some examples of Data Structures are arrays, Linked List, Stack, Queue, 

etc. 



1.3 ARRAYS 

1.3.1. INTRODUCTION 

Arrays are defined as the collection of similar type of data items 

stored at contiguous memory locations. Simply, declaration of array is as 

follows: 

int arr[10] 

 Where int specifies the data type or type of elements arrays stores. 

 “arr” is the name of array & the number specified inside the square 

brackets is the number of elements an array can store, this is also called 

sized or length of array. 

1.3.2. RANGE OF AN ARRAY 
 

Given an array arr of integer elements, the task is to find the range and 

coefficient of range of the given array where: 

Range: Difference between the maximum value and the minimum value in the 

distribution. 

Coefficient of Range: (Max – Min) / (Max + Min). 

Examples: 
 

Input: arr[] = {15, 16, 10, 9, 6, 7, 17} 

Output: Range : 11 

Coefficient of Range : 0.478261 

Max = 17, Min = 6 

Range = Max – Min = 17 – 6 = 11 

Coefficient of Range = (Max – Min) / (Max + Min) = 11 / 23 = 0.478261 

Input: arr[] = {5, 10, 15} 

Output: Range : 10 

Coefficient of Range : 0.5 



1.3.3. ONE DIMENSIONAL ARRAY 

A one-dimensional array as a row, where elements are stored one after 

another. 

datatype array_name[size]; 

datatype: It denotes the type of the elements in the array. 

array_name: Name of the array. It must be a valid identifier. 

size: Number of elements an array can hold. 

Here is some example of array declarations. 

int num[100]; float temp[20]; char ch[50]; 

num is an array of type int, which can only store 100 elements of 

type int. 

temp is an array of type float, which can only store 20 elements of 

type float. 

ch is an array of type char, which can only store 50 elements of 

type char. 

For example: Reading an array 

For(i=0;i<=9;i++) 

scanf(“%d”,&arr[i]); 

For example: Writing an array 

For(i=0;i<=9;i++) 

printf(“%d”,arr[i]) 

 

1.3.4. TWO DIMENSIONAL ARRAY 

2D array can be defined as an array of arrays. The 2D array is organized 

as matrices which can be represented as the collection of rows and columns. 

 The syntax of declaring two dimensional array is very much similar to 

that of a one dimensional array, given as follows. 

 For ex :int arr[max_rows][max_columns]; 

The two dimensional array, the elements are organized in the form of 



rows and columns. First element of the first row is represented by 

a[0][0] where the number shown in the first index is the number of that 

row while the number shown in the second index is the number of the 

column. 

 
1.3.5 SPECIAL TYPE OF MATRICES 

1. Row Matrix - A row matrix is formed by a single row. 
 
 

 

2. Column Matrix - A column matrix is formed by a single column. 
 

 

3. Rectangular Matrix - A rectangular matrix is formed by a different number 
of rows and columns, and its dimension is noted as: m x n. 

 

 

4. Square Matrix - A square matrix is formed by the same number of rows 
and columns. 

The elements of the form aii constitute the principal diagonal. 

 
The secondary diagonal is formed by the elements with i+j = n+1. 

5.Zero Matrix - In a zero matrix, all the elements are zeros. 

6. Upper Triangular Matrix - In an upper triangular matrix, the elements 
located below the diagonal are zeros. 

 



7. Lower Triangular Matrix - In a lower triangular matrix, the elements 
above the diagonal are zeros. 

 

 

8. Diagonal Matrix - In a diagonal matrix, all the elements above and below 
the diagonal are zeros. 

 

 

9. Scalar Matrix - A scalar matrix is a diagonal matrix in which the diagonal 
elements are equal. 

 

 

10. Identity Matrix - An identity matrix is a diagonal matrix in which the 
diagonal elements are equal to 1. 

 

 

11. Transpose Matrix - Given matrix A, the transpose of matrix A is another 
matrix where the elements in the columns and rows have switched. In other 
words, the rows become the columns and the columns become the rows. 

 

(At)t = A 

(A + B)t = At + Bt 

(α ·A)t = α · At 

(A · B)t = Bt · At 



12. Regular Matrix - A regular matrix is a square matrix that has an inverse. 

13.Singular Matrix - A singular matrix is a square matrix that has no inverse. 

14.Idempotent Matrix - The matrix A is idempotent if: 

A² = A. 

15. Involutive Matrix - The matrix A is involutive if: 

A² = I. 

16. Symmetric Matrix - A symmetric matrix is a square matrix that verifies: 

A = At. 

17. Antisymmetric Matrix - An antisymmetric matrix is a square matrix that 
verifies: 

A = −At. 

18. Orthogonal Matrix - A matrix is orthogonal if it verifies that: 

A · At = I 

1.4 LINKED LISTS 

1.4.1. INTRODUCTION 

 Linked List can be defined as collection of objects called nodes that are 

randomly stored in the memory. 

 A node contains two fields i.e. data stored at that particular address and 

the pointer which contains the address of the next node in the memory. 

 The last node of the list contains pointer to the null. 



 
 
 

1.4.2. BENEFITS AND LIMITATIONS OF LINKED LIST 

BENEFITS 

 Dynamic Data Structure 

Linked list is a dynamic data structure so it can grow and shrink at 

runtime by allocating and deallocating memory. So there is no need to 

give initial size of linked list. 

 Insertion and Deletion 

Insertion and deletion of nodes are easier. In linked list we just 

have to update the address present in next pointer of a node. 

 No Memory Wastage 

As size of linked list can increase or decrease at run time so there 

is no memory wastage. In linked list the memory is allocated only when 

required. 

 Implementation 

Data structures such as stack and queues can be easily 

implemented using linked list. 

LIMITATIONS 

 Memory Usage 

More memory is required to store elements in linked list as 

compared to array. Because in linked list each node contains a pointer 

and it requires extra memory for itself. 



 Traversal 

Elements or nodes traversal is difficult in linked list. For example 

if we want to access a node at position n then we have to traverse all the 

nodes before it. So, time required to access a node is large 

 Reverse Traversing 

In linked list reverse traversing is really difficult. In case of doubly 

linked list its easier but extra memory is required for back pointer 

hence wastage of memory. 

 
1.4.3. TYPES OF LINKED LIST 

There are three types of Linked List. 

1. Singly linked list. 

2. Circular linked list. 

3. Doubly linked list. 

 

1.4.3.1. SINGLY LINKED LIST 

Singly linked list can be defined as the collection of ordered set of 

elements.  

A node in the singly linked list consist of two parts: 

 data part - Data part of the node stores actual information 

that is to be represented by the node 

  link part- the link part of the node stores the address of its 

immediate successor. 
 

 



OPERATIONS ON SINGLY LINKED LIST 

There are various operations which can be performed on singly linked 

list. 

Node Creation 

struct node 

{ 

int data; 

struct node *next; 

}; 

struct node *head, *ptr; 

ptr = (struct node *)malloc(sizeof(struct node *)); 

 

INSERTION 

1. Insertion at beginning-It involves inserting any element at the front 

of the list. 

2. Insertion at end of the list-It involves insertion at the last of the 

linked list. 

3. Insertion after specified node-It involves insertion after the 

specified node of the linked list. 

DELETION & TRAVERSING 

1. Deletion at beginning-It involves deletion of a node from the 

beginning of the list. 

2. Deletion at the end of the list-It involves deleting the last node of 

the list. 

3. Deletion after specified node-It involves deleting the node after the 

specified node in the list. 

4. Traversing-In traversing, we simply visit each node of the list at least 

once in order to perform some specific operation on it. 



5. Searching-In searching, we match each element of the list with the 

given element. If the element is found on any of the location then location of 

that element is returned otherwise null is returned. 

Program: 

#include<stdio.h> 

#include<stdlib.h> 

void beginsert(int); 

struct node 

{ 

int data; 

struct node *next; 

}; 

struct node *head 

void main () 

{ 

int choice,item; 

do 

{ 

printf("\nEnter the item which you want to insert?\n"); 

scanf("%d",&item); 

beginsert(item); 

printf("\nPress 0 to insert more ?\n"); 

scanf("%d",&choice); 

}while(choice == 0); 

} 

ptr->next = head; 

head = ptr; 

printf("\nNode inserted\n"); 

} } 



1.4.3.2. CIRCULAR LINKED LIST 
 

 In a circular linked list, the last node of the list contains a pointer to the 

first node of the list. 

 We traverse a circular singly linked list until we reach the same node 

where we started. 

 The circular singly liked list has no beginning and no ending. There is no 

null value present in the next part of any of the nodes. 

 
 
 
 

 
Memory Representation of circular linked list: 

 



Operations on Circular Singly linked list: 
 

Insertion 
 

1. Insertion at beginning-Adding a node into circular singly 

linked list at the beginning. 

2. Insertion at the end-Adding a node into circular singly linked 

list at the end. 

Deletion & Traversing 
 

1. Deletion at beginning-Removing the node from circular singly 

linked list at the beginning. 

2. Deletion at the end-Removing the node from circular singly 

linked list at the end. 

3. Searching-Compare each element of the node with the given 

item and return the location at which the item is present in the list 

otherwise return null. 

4. Traversing-Visiting each element of the list at least once in 

order to perform some specific operation. 

Algorithm 

 Step 1: IF PTR = NULL 

Write OVERFLOW 
Go to Step 11 
[END OF IF] 

 Step 2: SET NEW_NODE = PTR 

 Step 3: SET PTR = PTR -> NEXT 

 Step 4: SET NEW_NODE -> DATA = VAL 

 Step 5: SET TEMP = HEAD 



 Step 6: Repeat Step 8 while TEMP -> NEXT != HEAD 

 Step 7: SET TEMP = TEMP -> NEXT 

 [END OF LOOP] 

 Step 8: SET NEW_NODE -> NEXT = HEAD 

 Step 9: SET TEMP → NEXT = NEW_NODE 

 Step 10: SET HEAD = NEW_NODE 

 Step 11: EXIT 

 
1.4.3.3. DOUBLY LINKED LIST 

 

Doubly linked list is a complex type of linked list in which a node 

contains a pointer to the previous as well as the next node in the sequence. 

In a doubly linked list, a node consists of three parts: 

1. node data, 

2. pointer to the next node in sequence (next pointer) , 

3. pointer to the previous node (previous pointer) 

 
 
 
 
 

 
. 

In C, structure of a node in doubly linked list can be given as: 

struct node 

{ 

struct node *prev; 

int data; 

struct node *next; 

} 



Memory Representation of a doubly linked list 
 

Node Creation 

struct node 

{ 

struct node *prev; 

int data; 

struct node *next; 

}; 

Operations on doubly linked list 

1. Insertion at beginning-Adding the node into the linked list at beginning. 

2. Insertion at end-Adding the node into the linked list to the end. 

3. Insertion after specified node-Adding the node into the linked list after 

the specified node. 

4. Deletion at beginning-Removing the node from beginning of the list 

5. Deletion at the end-Removing the node from end of the list. 

6. Deletion of the node having given data-Removing the node which is 

present just after the node containing the given data. 

7. Searching-Comparing each node data with the item to be searched and 

return the location of the item in the list if the item found else return null. 

8. Traversing-Visiting each node of the list at least once in order to perform 

some specific operation like searching, sorting, display, etc. 
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STACK AND QUEUE 

 

STACK  

2.1 INTRODUCTION 

 Stack is a linear data structure in which the insertion and deletion 

operations are performed at only one end.  

 In a stack, adding and removing of elements are performed at a 

single position which is known as "top".  

 In stack, the insertion and deletion operations are performed based 

on LIFO (Last In First Out) principle. 

    

 In a stack, the insertion operation is performed using a function 

called "push" and deletion operation is performed using a function 

called "pop". 

2.2 ADT STACK 

 The abstract datatype is special kind of datatype, whose behavior is 

defined by a set of values and set of operations. The keyword 

“Abstract” is used as we can use these datatypes, we can perform 

different operations.  



 But how those operations are working that is totally hidden from 

the user.  

 The ADT is made of with primitive datatypes, but operation logics 

are hidden. 

Here we will see the stack ADT. These are few operations or functions of the 

Stack ADT. 

•  isFull() - This is used to check whether stack is full or not. 

•  isEmpty() -  This is used to check whether stack is empty or not. 

•  push(x) -  This is used to push x into the stack. 

• pop() - This is used to delete one element from top of the stack. 

• peek() - This is used to get the top most element of the stack. 

• size() - This function is used to get number of elements present into 

the stack. 

2.3 IMPLEMENTATION OF STACK 

 Stack data structure can be implemented in two ways. They are as 

follows... 

 Using Array 

 Using Linked List 

Stack Using Array 

 A stack data structure can be implemented using a one-

dimensional array. But stack implemented using array stores 

only a fixed number of data values. Initially, the top is set to -1. 



 Whenever we want to insert a value into the stack, increment 

the top value by one and then insert.  

 Whenever we want to delete a value from the stack, then 

delete the top value and decrement the top value by one. 

Stack Operations using Array 

 Before implementing actual operations, first follow the steps to 

create an empty stack. 

 Step 1 - Include all the header files which are used in the program 

and define a constant 'SIZE' with specific value. 

 Step 2 - Declare all the functions used in stack implementation. 

 Step 3 - Create a one dimensional array with fixed size (int 

stack[SIZE]). 

 Step 4 - Define a integer variable 'top' and initialize with '-1'. (int 

top = -1). 

 Step 5 - In main method, display menu with list of operations and 

make suitable function calls to perform operation selected by the 

user on the stack. 

push(value) - Inserting value into the stack 

 In a stack, push() is a function used to insert an element into the 

stack. In a stack, the new element is always inserted at top position. Push 

function takes one integer value as parameter and inserts that value into 

the stack.  

 Step 1 - Check whether stack is FULL. (top == SIZE-1) 

 Step 2 - If it is FULL, then display "Stack is FULL!!! Insertion is not 

possible!!!" and terminate the function. 

 Step 3 - If it is NOT FULL, then increment top value by one (top++) 

and set stack[top] to value (stack[top] = value). 



pop() - Delete a value from the Stack 

 In a stack, pop() is a function used to delete an element from the 

stack. In a stack, the element is always deleted from top position. Pop 

function does not take any value as parameter.  

 Step 1 - Check whether stack is EMPTY. (top == -1) 

 Step 2 - If it is EMPTY, then display "Stack is EMPTY!!! Deletion is 

not possible!!!" and terminate the function. 

 Step 3 - If it is NOT EMPTY, then delete stack[top] and 

decrement top value by one (top--). 

display() - Displays the elements of a Stack 

To display the elements of a stack is, 

 Step 1 - Check whether stack is EMPTY. (top == -1) 

 Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and 

terminate the function. 

 Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize 

with top. Display stack[i] value and decrement i value by one (i--). 

 Step 3 - Repeat above step until i value becomes '0'. 

Stack Using Linked List 

 In linked list implementation of a stack, every new element is 

inserted as 'top' element. That means every newly inserted 

element is pointed by 'top'. 

 Whenever we want to remove an element from the stack, 

simply remove the node which is pointed by 'top' by moving 

'top' to its previous node in the list.  

 The next field of the first element must be always NULL. 

 



  
 

Stack Operations using Linked List 

 Step 1 - Include all the header files which are used in the program. 

And declare all the user defined functions. 

 Step 2 - Define a 'Node' structure with two members data and next. 

 Step 3 - Define a Node pointer 'top' and set it to NULL. 

 Step 4 - Implement the main method by displaying Menu with list of 

operations and make suitable function calls in the main method. 

push(value) - Inserting an element into the Stack 

To insert a new node into the stack.  

 Step 1 - Create a newNode with given value. 

 Step 2 - Check whether stack  is Empty (top == NULL) 

 Step 3 - If it is Empty, then set newNode → next = NULL. 

 Step 4 - If it is Not Empty, then set newNode →  next = top. 

 Step 5 - Finally, set top = newNode. 

pop() - Deleting an Element from a Stack 

To delete a node from the stack.  

 Step 1 - Check whether stack is Empty (top ==  NULL). 

 Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is 

not possible!!!" and terminate the function 

 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and 

set it to 'top'. 



 Step 4 - Then set 'top = top → next'. 

 Step 5 - Finally, delete 'temp'. (free(temp)). 

display() - Displaying stack of elements 

To display the elements (nodes) of a stack.  

 Step 1 - Check whether stack is Empty (top == NULL). 

 Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate 

the function. 

 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and 

initialize with top. 

 Step 4 - Display 'temp → data --->' and move it to the next node. 

Repeat the same until temp reaches to the first node in the stack. 

(temp → next != NULL). 

 Step 5 - Finally! Display 'temp → data ---> NULL'. 

 

2.4 APPLICATION OF STACK 

 1. Stacks can be used for expression evaluation. 

 2. Stacks can be used to check parenthesis matching in an expression. 

 3. Stacks can be used for Conversion from one form of expression to 

another. 

 4. Stacks can be used for Memory Management. 

 5. Stack data structures are used in backtracking problems. 

1. Expression Evaluation 

 Stack data structure is used for evaluating the given expression. For 

example, consider the following expression 



 5 * ( 6 + 2 ) - 12 / 4  

 Since parenthesis has the highest precedence among the arithmetic 

operators, ( 6 +2 ) = 8 will be evaluated first. Now, the expression becomes  

 5 * 8 - 12 / 4  

 * and / have equal precedence and their associativity is from left-to-right. 

So, start evaluating the expression from left-to-right. 

 5 * 8 = 40 and 12 / 4 = 3  

 Now, the expression becomes 40 - 3   

 

And the value returned after the subtraction operation is 37. 

 2. Parenthesis Matching 

 Given an expression, you have to find if the parenthesis is either correctly 

matched or not. For example, consider the expression  

  ( a + b ) * ( c + d ).  

 In the above expression, the opening and closing of the parenthesis are 

given properly and hence it is said to be a correctly matched parenthesis 

expression. Whereas, the expression, (a + b * [c + d ) is not a valid expression as 

the parenthesis are incorrectly given. 

3. Expression Conversion 

Converting one form of expressions to another is one of the important 

applications of Stacks. 

 1. Infix to prefix 

 2. Infix to postfix 



 3. Prefix to Infix 

 4. Prefix to Postfix 

 5. Postfix to Infix 

 6. Postfix to Infix 

 

 

4. Memory management 

 The assignment of memory takes place in contiguous memory 

blocks. We call this stack memory allocation because the assignment 

takes place in the function call stack.  

 The size of the memory to be allocated is known to the compiler. 

When a function is called, its variables get memory allocated on the 

stack.   

 When the function call is completed, the memory for the variables is 

released.  

 All this happens with the help of some predefined routines in the 

compiler.  

 The user does not have to worry about memory allocation and 

release of stack variables. 

5. Backtracking Problems 

 Consider the N-Queens problem for an example. The solution of this 

problem is that N queens should be positioned on a chessboard so 

that none of the queens can attack another queen.  



 In the generalized N-Queens problem, N represents the number of 

rows and columns of the board and the number of queens which 

must be placed in safe positions on the board. 

 The basic strategy we will use to solve this problem is to 

use backtracking.  

 Backtracking means we will perform a safe move for a queen at the 

time we make the move.  

 

QUEUE 

2.5 INTRODUCTION 

 Queue is a linear data structure in which the insertion and deletion 

operations are performed at two different ends.  The insertion is 

performed at one end and deletion is performed at another end.  

 In a queue data structure, the insertion operation is performed at a 

position which is known as ‘rear‘and the deletion operation is 

performed at a position which is known as 'front'.  

 In queue data structure, the insertion and deletion operations are 

performed based on FIFO (First In First Out) principle. In a queue 

data structure, the insertion operation is performed using a function 

called "enQueue()" and deletion operation is performed using a 

function called deQueue()". 

  

 



2.6 IMPLEMENTATION OF BASIC OPERATIONS ON ARRAY BASED AND 

LINKED LIST BASED QUEUE 

 Queue data structure can be implemented in two ways. They are as 

follows... 

  1. Using Array 

  2. Using Linked List 

1. Queue Using Array 

 A queue data structure can be implemented using one dimensional array. 

The queue implemented using array stores only fixed number of data values.  

 Just define a one dimensional array of specific size and insert or delete the 

values into that array by using FIFO (First In First Out) principle with the help of 

variables 'front' and 'rear'. Initially both 'front' and 'rear' are set to -1.  

Queue Operations using Array 

 Step 1 - Include all the header files which are used in the program and 

define a constant 'SIZE' with specific value. 

 Step 2 - Declare all the user defined functions which are used in queue 

implementation. 

 Step 3 - Create a one dimensional array with above defined SIZE (int 

queue[SIZE]) 

 Step 4 - Define two integer variables 'front' and 'rear' and initialize both 

with '-1'.  

  (int front = -1, rear = -1) 



 Step 5 - Then implement main method by displaying menu of operations 

list and make suitable function calls to perform operation selected by the 

user on queue. 

enQueue(value) - Inserting value into the queue 

 Step 1 - Check whether queue is FULL. (rear == SIZE-1) 

 Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not 

possible!!!" and terminate the function. 

 Step 3 - If it is NOT FULL, then increment rear value by one (rear++) and 

set queue[rear] = value. 

deQueue() - Deleting a value from the Queue 

 Step 1 - Check whether queue is EMPTY. (front == rear) 

 Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not 

possible!!!" and terminate the function. 

 Step 3 - If it is NOT EMPTY, then increment the front value by one (front 

++). Then display queue[front] as deleted element. Then check whether 

both front and rear are equal (front == rear), if it TRUE, then set 

both front and rear to '-1' (front = rear = -1). 

display() - Displays the elements of a Queue 

We can use the following steps to display the elements of a queue. 

 Step 1 - Check whether queue is EMPTY. (front == rear) 

 Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate 

the function. 

 Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 

'i = front+1'. 



 Step 4 - Display 'queue[i]' value and increment 'i' value by one (i++). 

Repeat the same until 'i' value reaches to rear (i <= rear) 

Queue Using Linked List 

 In linked list implementation of a queue, the last inserted node is always 

pointed by 'rear' and the first node is always pointed by 'front'. 

  

Operations 

 Step 1 - Include all the header files which are used in the program. And 

declare all the user defined functions. 

 Step 2 - Define a 'Node' structure with two members data and next. 

 Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL. 

 Step 4 - Implement the main method by displaying Menu of list of 

operations and make suitable function calls in the main method to 

perform user selected operation. 

enQueue(value) - Inserting an element into the Queue 

To insert a new node into the queue, 

 Step 1 - Create a newNode with given value and set 'newNode → next' 

to NULL. 

 Step 2 - Check whether queue is Empty (rear == NULL) 

 Step 3 - If it is Empty then, set front = newNode and rear = newNode. 



 Step 4 - If it is Not Empty then, set rear → 

next = newNode and rear = newNode. 

deQueue() - Deleting an Element from Queue 

To delete a node from the queue, 

 Step 1 - Check whether queue is Empty (front == NULL). 

 Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not 

possible!!!" and terminate from the function 

 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 

'front'. 

 Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)). 

display() - Displaying the elements of Queue 

To display the elements (nodes) of a queue, 

 Step 1 - Check whether queue is Empty (front == NULL). 

 Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the 

function. 

 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize 

with front. 

 Step 4 - Display 'temp → data --->' and move it to the next node. Repeat 

the same until 'temp' reaches to 'rear' (temp → next != NULL). 

 Step 5 - Finally! Display 'temp → data ---> NULL'. 

2.7 CIRCULAR QUEUES 

 A circular queue is a linear data structure in which the operations are 

performed based on FIFO (First In First Out) principle and the last position is 

connected back to the first position to make a circle. 



    

 Step 1 - Include all the header files which are used in the program and 

define a constant 'SIZE' with specific value. 

 Step 2 - Declare all user defined functions used in circular queue 

implementation. 

 Step 3 - Create a one dimensional array with above defined SIZE (int 

cQueue[SIZE]) 

 Step 4 - Define two integer variables 'front' and 'rear' and initialize both 

with '-1'. (int front = -1, rear = -1) 

 Step 5 - Implement main method by displaying menu of operations list 

and make suitable function calls to perform operation selected by the user 

on circular queue. 

enQueue(value) - Inserting value into the Circular Queue 

 Step 1 - Check whether queue is FULL. ((rear == SIZE-1 && front == 0) 

|| (front == rear+1)) 

 Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not 

possible!!!" and terminate the function. 

 Step 3 - If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it 

is TRUE, then set rear = -1. 



 Step 4 - Increment rear value by one (rear++), 

set queue[rear] = value and check 'front == -1' if it is TRUE, then 

set front = 0. 

 

deQueue() - Deleting a value from the Circular Queue 

 Step 1 - Check whether queue is EMPTY. (front == -1 && rear == -1) 

 Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not 

possible!!!" and terminate the function. 

 Step 3 - If it is NOT EMPTY, then display queue[front] as deleted element 

and increment the front value by one (front ++). Then check 

whether front == SIZE, if it is TRUE, then set front = 0. Then check 

whether both front - 1 and rear are equal (front -1 == rear), if it TRUE, 

then set both front and rear to '-1' (front = rear = -1). 

display() - Displays the elements of a Circular Queue 

We can use the following steps to display the elements of a circular queue... 

 Step 1 - Check whether queue is EMPTY. (front == -1) 

 Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate 

the function. 

 Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 

'i = front'. 

 Step 4 - Check whether 'front <= rear', if it is TRUE, then display 

'queue[i]' value and increment 'i' value by one (i++). Repeat the same 

until 'i <= rear' becomes FALSE. 



 Step 5 - If 'front <= rear' is FALSE, then display 'queue[i]' value and 

increment 'i' value by one (i++). Repeat the same until'i <= SIZE - 1' 

becomes FALSE. 

 Step 6 - Set i to 0. 

 Step 7 - Again display 'cQueue[i]' value and increment i value by one 

(i++). Repeat the same until 'i <= rear' becomes FALSE. 
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TREES 

3.1 INTRODUCTION 

 Tree is a non-linear data structure which organizes data in 

hierarchical structure and this is a recursive definition. 

 Tree data structure is a collection of data (Node) which is 

organized in hierarchical structure recursively 

 In tree data structure, every individual element is called as Node. 

Node in a tree data structure stores the actual data of that 

particular element and link to next element in hierarchical 

structure. 

 In a tree data structure, if we have N number of nodes then 

we can have a maximum of N-1 number of links. 

  

TREE with 11 Nodes and 10 Edges 

- In any tree with ‘N’ nodes there will be maximum of ‘N-1’ edges. 

- In a tree every individual element is called as ‘NODE’ 

 

 

 

 



3.2 BINARY TREES 

 In a normal tree, every node can have any number of children. A 

binary tree is a special type of tree data structure in which every 

node can have a maximum of 2 children. One is known as a left 

child and the other is known as right child. 

 A tree in which every node can have a maximum of two children is 

called Binary Tree. 

 In a binary tree, every node can have either 0 children or 1 child 

or 2 children but not more than 2 children. 

  

Types of Binary trees: 

 1. Strictly Binary Tree 

 2. Complete Binary Tree 

 3. Extended Binary Tree 

1. Strictly Binary Tree 

 In strictly binary tree, every node should have exactly two 

children or none. That means every internal node must have 

exactly two children. 

 Strictly binary tree is also called as Full Binary Tree or Proper 

Binary Tree or 2-Tree. 



   

 

2. Complete Binary Tree 

 In complete binary tree all the nodes must have exactly two 

children and at every level of complete binary tree there must be 

2level number of nodes.  

 For example at level 2 there must be 22 = 4 nodes and at level 3 

there must be 23 = 8 nodes. 

 Complete binary tree is also called as Perfect Binary Tree.  

   

3. Extended Binary Tree 

 A binary tree can be converted into Full Binary tree by adding 

dummy nodes to existing nodes wherever required. 

 The full binary tree obtained by adding dummy nodes to a binary 

tree is called as Extended Binary Tree. 



  

3.3 REPRESENTATION OF BINARY TREES 

 A binary tree data structure is represented using two methods.  

  1. Array Representation 

  2. Linked List Representation 

 

1. Array Representation of Binary Tree 

 In array representation of a binary tree, we use one-dimensional 

array (1-D Array) to represent a binary tree. 

 To represent a binary tree of depth 'n' using array representation, 

we need one dimensional array with a maximum size of 2n + 1. 

 



2. Linked List Representation of Binary Tree 

 We use a double linked list to represent a binary tree. In a double 

linked list, every node consists of three fields.  

 First field for storing left child address 

 Second for storing actual data  

 Third for storing right child address. 

Structure: 

   

 

3.4 BINARY TREE TRAVERSAL 

 Here are three types of binary tree traversals. 

1. In - Order Traversal 

2. Pre - Order Traversal 

3. Post - Order Traversal 

Consider the following binary tree... 



    

3.5 RECURSIVE PROCEDURES OF TRAVERSAL METHODS 

1. In - Order Traversal ( leftChild - root - rightChild ) 

 In the above example of a binary tree, first we try to visit left child 

of root node 'A', but A's left child 'B' is a root node for left subtree.  

 so we try to visit its (B's) left child 'D' and again D is a root for 

subtree with nodes D, I and J.  

 So we try to visit its left child 'I' and it is the leftmost child. So first 

we visit 'I' then go for its root node 'D' and later we visit D's right 

child 'J'.  

 With this we have completed the left part of node B.  

 Then visit 'B' and next B's right child 'F' is visited. 

 With this we have completed left part of node A. 

 Then visit root node 'A'.  

 With this we have completed left and root parts of node A. 

 Then we go for the right part of the node A.  

 In right of A again there is a subtree with root C.  

 So go for left child of C and again it is a subtree with root G.  

 But G does not have left part so we visit 'G' and then visit G's right 

child K. 

 With this we have completed the left part of node C.  



 Then visit root node 'C' and next visit C's right child 'H' which is 

the rightmost child in the tree.  

 So we stop the process. 

 In-Order Traversal for above example of binary tree is  

I - D - J - B - F - A - G - K - C – H 

2. Pre - Order Traversal ( root - leftChild - rightChild ) 

 In the above example of binary tree, first we visit root node 'A' then visit 

its left child 'B' which is a root for D and F.  

 So we visit B's left child 'D' and again D is a root for I and J.  

 So we visit D's left child 'I' which is the leftmost child. 

 So next we go for visiting D's right child 'J'.  

 With this we have completed root, left and right parts of node D and 

root, left parts of node B. Next visit B's right child 'F'.  

 With this we have completed root and left parts of node A.  

 So we go for A's right child 'C' which is a root node for G and H.  

 After visiting C, we go for its left child 'G' which is a root for node K.  

 So next we visit left of G, but it does not have left child so we go for G's 

right child 'K'.  

 With this, we have completed node C's root and left parts.  

 Next visit C's right child 'H' which is the rightmost child in the tree.  

So we stop the process. 

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using 

Pre-Order Traversal. 

 



3. Post - Order Traversal ( leftChild - rightChild - root ) 

 In Post-Order traversal, the root node is visited after left child and right 

child.  

 In this traversal, left child node is visited first, then its right child and 

then its root node.  

 This is recursively performed until the right most node is visited. 

 

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using 

Post-Order Traversal. 

3.6 EXPRESSION TREES 

 Expression Tree is used to represent expressions. 

 An expression and expression tree shown below 

     a + (b * c) + d * (e + f) 

   

    

Expressions may includes constants value as well as variables 

 a * 6  

 16  

 (a^2)+(b^2)+(2 * a * b)  

 (a/b) + (c)  



  m * (c ^ 2) 

It is quite common to use parenthesis in order to ensure correct evaluation of 

expression as shown above 

There are different types of expression formats: 

 Prefix expression 

 Infix expression and 

 Postfix expression 

Expression Tree is a special kind of binary tree with the following properties: 

 Each leaf is an operand. Examples: a, b, c, 6, 100 

 The root and internal nodes are operators. Examples: +, -, *, /, ^ 

 Subtrees are subexpressions with the root being an operator. 

Traversal Techniques 

Inorder Traversal 

We can produce an infix expression by recursively printing out 

 the left expression, 

 the root, and 

 the right expression. 

 

P o s t o r d e r  T r a v e r s a l  

The postfix expression can be evaluated by recursively printing out 

 the left expression, 

 the right expression and 

 then the root 



P r e o r d e r  T r a v e r s a l  

We can also evaluate prefix expression by recursively printing out: 

 the root, 

 the left expressoion and 

 the right expression. 

If we apply all these strategies to the sample tree above, the outputs are: 

 Infix expression: 

(a+(b*c))+(d*(e + f)) 

 Postfix Expression: 

a b c * + d e f + * +  

 Prefix Expression: 

 + + a * b c * d + e f  

C o n s t r u c t i o n  o f  E x p r e s s i o n  T r e e  

We consider that a postfix expression is given as an input for constructing an 

expression tree. Following are the step to construct an expression tree: 

1. Read one symbol at a time from the postfix expression. 

2. Check if the symbol is an operand or operator. 

3. If the symbol is an operand, create a one node tree and pushed a pointer 

onto a stack 



4. If the symbol is an operator, pop two pointer from the stack namely T1 & 

T2 and form a new tree with root as the operator, T1 & T2 as a left and 

right child 

5. A pointer to this new tree is pushed onto the stack 

E x a m p l e  

The input is: a b + c * 

1. The first two symbols are operands, we create one-node tree and push a 

pointer to them onto the stack. 

 

2. Next, read a'+' symbol, so two pointers to tree are popped, a new tree is 

formed and push a pointer to it onto the stack. 

 

3. Next, 'c' is read, we create one node tree and push a pointer to it onto 

the stack. 

 

https://www.krivalar.com/picture/tree/exp/exp1.jpg


 

4. Finally, the last symbol is read ' * ', we pop two tree pointers and form a 

new tree with a, ' * ' as root, and a pointer to the final tree remains on the 

stack. 

 

    

 

3.7 THREADED TREES 

1. A. J. Perlis and C. Thornton have proposed new binary tree called 

"Threaded Binary Tree", which makes use of NULL pointers to improve its 

traversal process.  

2. In a threaded binary tree, NULL pointers are replaced by references of other 

nodes in the tree. These extra references are called as threads. 

3. If there is no in-order predecessor or in-order successor, then it points to 
the root node. 

  

 To convert the above example binary tree into a threaded binary tree, 

first find the in-order traversal of that tree... 



In-order traversal of above binary tree... 

H - D - I - B - E - A - F - J - C - G 

 When we represent the above binary tree using linked list 

representation, nodes H, I, E, F, J and G left child pointers are NULL.  

 This NULL is replaced by address of its in-order predecessor 

respectively (I to D, E to B, F to A, J to F and G to C), but here the node 

H does not have its in-order predecessor, so it points to the root node 

A and nodes H, I, E, J and G right child pointers are NULL.  

 These NULL pointers are replaced by address of its in-order 

successor respectively (H to D, I to B, E to A, and J to C), but here the 

node G does not have its in-order successor, so it points to the root 

node A. 

Above example binary tree is converted into threaded binary tree as follows. 

  

In the above figure, threads are indicated with dotted links. 

 

 



3.8 APPLICATION OF TREES 

1. Binary Search Trees (BSTs) are used to quickly check whether an element is 

present in a set or not. 

2. Heap is a kind of tree that is used for heap sort.  

3 .A modified version of a tree called Tries is used in modern routers to store 

routing information. 

4. Most popular databases use B-Trees and T-Trees, which are variants of the 

tree structure we learned above to store their data 

5. Compilers use a syntax tree to validate the syntax of every program you 

write. 
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4.1. ALGORITHM 

4.1.1WHAT IS AN ALGORITHM? 

 An algorithm is a finite set of instructions which, if followed, 

accomplish a particular task. In addition every algorithm must satisfy 

the following criteria: 



1. input: there are zero or more quantities which are 

externally supplied; 

2. output: at least one quantity is produced; 

3. definiteness: each instruction must be clear and 

unambiguous; 

4. finiteness: if we trace out the instructions of an 

algorithm, then for all cases the algorithm will 

terminate after a finite number of steps; 

5. effectiveness: every instruction must be sufficiently 

basic that it can in principle be carried out by a person 

using only pencil and paper. It is not enough that each 

operation be definite, but it must also be feasible. 

======================== 

 

4.1.2. ALGORITHM SPECIFICATIONS 

 

Recursive Algorithms 

Recursion is similar to the method of induction which is often used to 

prove mathematical statements. In mathematical induction, a statement 

about integers (e.g., the sum of the first n positive integers is n (n +1)12) is 

proved by showing that the statement can be proved for integer k if it is 

assumed to be true for integer k -1.  

To understand a recursive function, you must. 

(1) Formulate in your mind a statement of what it is that the function is 

supposed to do, for a given input. 

(2) Verify that the function does achieve its goal if the recursive invocations 

to itself do what they are supposed to. 

(3) Ensure that a finite number of recursive invocations of the function 

eventually lead to an invocation which satisfies the terminating condition 

(otherwise, the function will keep calling itself and not terminate!).· 

(4) The function should perform the correct computations if the terminating 

condition is encountered. . 

 

 

Example 1.5 [Permutation generator]:·  

 Given a set of n > 1 elements, the problem is to print all possible 

permutations of this set. For example if the set is {a, b, c}, then the set of 

permutations is {(a, b, c), (a, c, b),(b, a, c),(b, c, a),(c, a, b),(c, b, a)}. It is 

easy to see that given n elements, there are n ! different permutations. 

 A simple algorithm can be obtained by looking at the the case of four 

elements (a,b,c,d). The answer can be constructed by writing. 

 

 a followed by all permutations of (b,c,d) 

(2) b followed by all permutations of (a,c,d) 

(3) c followed by all permutations of (a,b,d) 

(4) d followed by all permutations of (a,b,c) 

 The expression “followed by all permutations” is the clue to ‘recursion. It 

implies that we can solve the problem for a set with n elements if we have an 

algorithm that works on n – 1 elements. These observations lead to Program 

1.11, which is invoked by perm (a, 0, n). 



 

======================== 

 

4.1.3. PERFORMANCE ANALYSIS: 

SPACE COMPLEXITY:  

 Amount of memory space required to solve the 

algorithm.  
 

i)Fixed Space Requirements (C) 

 

 Independent of the characteristics of the inputs and 

outputs 

instruction space 

 space for simple variables, fixed-size structured 

variable, constants 

          ii)Variable Space Requirements (S
P
(I)) 

          depend on the instance characteristic I 

 number, size, values of inputs and outputs associated 

with I 

 recursive stack space, formal parameters, local 

variables,          return address 
Space Complexity 

S(P)=C+S
P

(I) 

*Program 1.10: Iterative function for summing a list of 

numbers (p.20) 

float sum(float list[ ], int n) 

{ 

  float tempsum = 0; 

inti; 

  for (i = 0; i<n; i++) 

tempsum += list [i]; 

  return tempsum; 

}     

 *Program 1.11: Recursive function for summing a list of 

numbers (p.20) 

float rsum(float list[ ], int n) 

{ 

   if (n) return rsum(list, n-1) + list[n-1]; 

   return 0; 

 } 

Time Complexity : 

 Amount of compilation time and run time to execute 

algorithm  



 A program step is a syntactically or semantically 

meaningful program segment whose execution time is 

independent of the instance characteristics. 
T

P
(n)=c

a
ADD(n)+c

s
SUB(n)+c

l
LDA(n)+c

st
STA(n) 

*Program 1.12: Program 1.10 with count statements (p.23) 

 

float sum(float list[ ], int n) 

{ 

    float tempsum = 0; count++; /* for assignment */ 

inti; 

    for (i = 0; i< n; i++) { 

          count++;             /*for the for loop */ 

tempsum += list[i]; count++;  /* for assignment */ 

    } 

    count++;         /* last execution of for */ 

    return tempsum;  

    count++;         /* for return */  

}    

 

*Program 1.13: Simplified version of Program 1.12 (p.23) 

 

float sum(float list[ ], int n) 

{ 

    float tempsum = 0; 

inti;  

    for (i = 0; i< n; i++) 

         count += 2; 

    count += 3; 

    return 0; 

} 

 

======================== 

 

 

 

 

4.2. DIVIDE AND CONQUER 

4.2.1INTRODUCTION 

General Method 

Divide and conquer is a design strategy which is well 

known to breaking down efficiency barriers. When the method 

applies, it often leads to a large improvement in time complexity. 

For example, from O (n2) to O (n log n) to sort the elements. 

Divide and conquer strategy is as follows: divide the 
problem instance into two or more smaller instances of the same 
problem, solve the smaller instances recursively, and assemble the 



solutions to form a solution of the original instance. The recursion stops 
when an instance is reached which is too small to divide. When 
dividing the instance, one can either use whatever division comes 
most easily to hand or invest time in making the division carefully so 
that the assembly is simplified. 

 
Divide and conquer algorithm consists of two parts: 
 
Divide  :  Divide the problem into a number of sub 

problems. The  sub problems 
are solved recursively. 
Conquer  :  The solution to the original problem is then 

formed from  the solutions 
to the sub problems (patching together the answers). 
 
Traditionally, routines in which the text 

contains at least two recursive calls are called divide and 
conquer algorithms, while routines whose text contains only 
one recursive call are not. Divide-and-conquer is a very 
powerful use of recursion. 

DANDC (P) 
{ 
if 

SMAL

L (P) 

then 

return 

S (p);  
else 
{ 

divide p into smaller instances p1, p2, …. Pk, k 1; 
apply DANDC to each of these sub problems; 
return (COMBINE (DANDC (p1) , DANDC 
(p2),….DANDC (pk));  
} 
} 

SMALL (P) is a Boolean valued function which 
determines whether the input size is small enough so that 
the answer can be computed without splitting. If this is so 

function „S‟ is invoked otherwise, the problem „p‟ into 
smaller sub problems. These sub problems p1, p2, . . . , pk  are 
solved by recursive application of DANDC. 

======================== 

4.2.2. BINARY SEARCH 

In Binary search we jump into the middle of the file, where we find key 

a[mid], and  
compare „x‟ with a[mid]. If x = a[mid] then the desired record has 
been found.  
If x < a[mid] then „x‟ must be in that portion of the file that precedes 
a[mid], if there  
at all. Similarly, if a[mid] > x, then further search is only necessary in 
that past of  
the file which follows a[mid]. If we use recursive procedure of finding 
the middle key  
a[mid] of the un-searched portion of a file, then every un-successful 
comparison of  
„x‟ with a[mid] will eliminate roughly half the un-searched portion from 
consideration. 

Since the array size is roughly halved often each comparison between  „x‟  and  
a[mid], and since an array of length „n‟ can be halved only about log2n 

times before  



reaching a trivial length, the worst case complexity of Binary search is 

about log2n 
 
 
Algorithm Algorithm 
 
BINSRCH (a, n, x) 
// array a(1 : n) of elements in increasing order, n 0, 
// determine whether „x‟ is present, and if so, set j 
such that x = a(j) 
// else return j 
 
{ 
low :=1 ; high :=n ;  
while (low <high) do 
{ 
mid :=|(low + high)/2| 
if (x < a [mid]) then high:=mid - 1; 
else if (x > a [mid]) then low:= mid + 1  
 else return mid; 
} 
return 0; 
} 
 
low and high are integer variables such that each time through the loop 
either „x‟ is  
found or low is increased by at least one or high is decreased by at 
least one. Thus  
we have two sequences of integers approaching each other and 
eventually low will  
become greater than high causing termination in a finite number of 
steps if „x‟ is not  
present. 
 
 
 
 
Example for Binary Search 
 
 
Let us illustrate binary search on the following 9 elements: 
 

Index 1 2 3 4 5 6 7 8 9 
Elemen
ts 

-
1
5 

-
6 

0 7 9 2
3 

5
4 

8
2 

1
0
1 

 
The number of comparisons required for searching different elements is 
as follows: 

 1.Searching for x = 101 
 
 
 
 
 

Number of comparisons = 4 
 
 
2.Searching for x = 82 
 
 
 
 
Number of comparisons = 3 
 
 
3.Searching for x = 42 
 
 

  
 

Number of comparisons = 4 
 
 
4.Searching for x = -14 
 
 
 
 
Number of comparisons = 3 



low     high    mid  
 1  9  5 
6  9  7 
8  9  8 
9  9  9 
found 
 
 

low     high    mid  
 1  9  5 
6  9  7 
8  9  8 
found 
 
 
 
low    high    mid  
 1  9  5 
6  9  7 
6  6  6 
7  6  not found 
 
 
 
 
low  high   mid 
1  9  5 
1  4  2 
1  1  1 
2  1   not found 



 
Continuing in this manner the number of element comparisons needed 
to find each of nine elements is: 
 

Index 1 2 3 4 5 6 7 8 9 
Elements -

1
5 

-
6 

0 7 9 2
3 

5
4 

8
2 

1
0
1 

Compariso
ns 

3 2 3 4 1 3 2 3 4 
 
No   element   requires   more   than  4   comparisons   to   
be   found.   Summing  the comparisons needed to find all nine items 
and dividing by 9, yielding 25/9  or approximately 2.77 comparisons 
per successful search on the average. 

There are ten possible ways that an un-successful search may 

terminate depending upon the value of x. 
 
 

 

======================== 

4.2.3. FINDING MAXIMUM AND MINIMUM 

1. Let us consider simple problem that can be solved by the divide-and 
conquer technique. 

2. The problem is to find the maximum and minimum value in a set of ‘n’ 
elements. 

3. By comparing numbers of elements, the time complexity of this algorithm 
can be analyzed. 

4. Hence, the time is determined mainly by the total cost of the element 
comparison. 

5. comparison. 

 

Explanation: 

a. Straight MaxMin requires 2(n-1) element comparisons in the best, 
average & worst cases. 

b. By realizing the comparison of a [i]max is false, improvement in a 
algorithm can be done. 



c. Hence we can replace the contents of the for loop by, If (a [i]> Max) then 
Max = a [i]; Else if (a [i]< 2(n-1) 

d. On the average a[i] is > max half the time, and so, the avg. no. of 
comparison is 3n/2-1. 

A Divide and Conquer Algorithm for this problem would proceed as follows: 

a. Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. 

b. Here ‘n’ is the no. of elements in the list (a [i],….,a[j]) and we are 
interested in finding the maximum and minimum of the list. 

c. If the list has more than 2 elements, P has to be divided into smaller 
instances. 

d. For example, we might divide ‘P’ into the 2 instances, 
P1=([n/2],a[1],……..a[n/2]) & P2= ( n-[n/2], a[[n/2]+1],….., a[n]) After 
having divided ‘P’ into 2 smaller sub problems, we can solve them by 
recursively invoking the same divide-and-conquer algorithm. 

Algorithm: 

 

Example: 



A 1 2 3 4 5 6 7 8 9 

Values 22 13 -5 -8 15 60 17 31 47 

Tree Diagram: 

 

======================== 

 

4.2.4. MERGE SORT 

 Merge sort is one of the most efficient sorting algorithms. It works on 
the principle of Divide and Conquer.  

 Merge sort repeatedly breaks down a list into several sublists until each 
sublist consists of a single element and merging those sublists in a 
manner that results into a sorted list. 

 Example: Let us consider an example to understand the approach 
better. 

 Divide the unsorted list into n sublists, each comprising 1 element (a list 
of 1 element is supposed sorted). 



 Repeatedly merge sublists to produce newly sorted sublists until there 
is only 1 sublist remaining. This will be the sorted list. 

 

Merging of two lists done as follows: 

 The first element of both lists is compared. If sorting in ascending order, 
the smaller element among two becomes a new element of the sorted 
list.  

 This procedure is repeated until both the smaller sublists are empty and 
the newly combined sublist covers all the elements of both the sublists. 



 voidmerge(int*Arr,intstart,intmid,intend){ 
 // create a temp array 
 inttemp[end-start+1]; 
 
 // crawlers for both intervals and for temp 
 inti=start,j=mid+1,k=0; 
 
 // traverse both arrays and in each iteration add smaller of both elem
ents in temp  
 while(i<=mid&&j<=end){ 
  if(Arr[i]<=Arr[j]){ 
   temp[k]=Arr[i]; 
   k+=1;i+=1; 
  } 
  else{ 
   temp[k]=Arr[j]; 
   k+=1;j+=1; 
  } 
 } 
 
 // add elements left in the first interval  
 while(i<=mid){ 
  temp[k]=Arr[i]; 
  k+=1;i+=1; 
 } 
 



 // add elements left in the second interval  
 while(j<=end){ 
  temp[k]=Arr[j]; 
  k+=1;j+=1; 
 } 
 
 // copy temp to original interval 
 for(i=start;i<=end;i+=1){ 
  Arr[i]=temp[i-start] 
 } 
} 
 
// Arr is an array of integer type 
// start and end are the starting and ending index of current interval of Arr 
 
voidmergeSort(int*Arr,intstart,intend) 
{ 
 
 if(start<end){ 
  intmid=(start+end)/2; 
  mergeSort(Arr,start,mid); 
  mergeSort(Arr,mid+1,end); 
  merge(Arr,start,mid,end); 
 } 
} 

 

 

======================== 

 

4.2.5.QUICK SORT: 

 Technically, quick sort follows the below steps: 

Step 1 − Make any element as pivot 

Step 2 − Partition the array on the basis of pivot 

Step 3 − Apply quick sort on left partition recursively 

Step 4 − Apply quick sort on right partition recursively 

 

 Consider the following array: 50, 23, 9, 18, 61, 32.  

 the pivot (32) comes at its actual position and all elements to its left are 
lesser, and all elements to the right are greater than itself. 

 Step 2: The main array after the first step becomes 



 23, 9, 18, 32, 61, 50 

 Step 3: Now the list is divided into two parts: 
 Sublist before pivot element 

 Sublist after pivot element 

 Step 4: Repeat the steps for the left and right sublists recursively. The 
final array thus becomes 
9, 18, 23, 32, 50, 61. 
 

 

void swap(int *a, int *b) 
{ 
 int temp;  
 temp = *a; 
 *a = *b; 
 *b = temp; 
} 
 
// Partitioning the array on the basis of values at high as pivot value. 
int Partition(int a[], int low, int high) 
{ 
 int pivot, index, i; 
 index = low; 
 pivot = high; 
 
 
 for(i=low; i< high; i++) 
 { 
  if(a[i] < a[pivot]) 
  { 
   
 
 return index; 
} 
 
 
  
intQuickSort(int a[], int low, int high) 
{ 
 intpindex; 
 if(low < high) 
  pindex = RandomPivotPartition(a, low, high); 
   
  QuickSort(a, low, pindex-1); 
  QuickSort(a, pindex+1, high); 
 } 



 return 0; 
} 
 
int main() 
{ 
 int n, i; 
 cout<<"\nEnter the number of data elements to be sorted: "; 
 cin>>n; 
 
 intarr[n]; 
 for(i = 0; i< n; i++) 
 { 
  cout<<"Enter element "<<i+1<<": "; 
  cin>>arr[i]; 
 } 
 
 QuickSort(arr, 0, n-1); 
 
  
 cout<<"\nSorted Data "; 
 for (i = 0; i< n; i++) 
 cout<<"->"<<arr[i]; 

 
 return 0; 
} 

 

 

4.2.6 SELECTION SORT: 

 Selection sort is an algorithm that selects the smallest element from an 

unsorted list in each iteration and places that element at the beginning 

of the unsorted list. 



How Selection Sort Works? 

1. Set the first element as minimum.

Select first element 

as minimum 

2. Compare minimum with the second element. If the second element is 

smaller than minimum, assign the second element as minimum. 

3.  Compare minimum with the third element. Again, if the third element 

is smaller, then assign minimum to the third element otherwise do 

nothing. The process goes on until the last element.

 

4. Compare minimum with the remaining elements 

5. After each iteration, minimum is placed in the front of the unsorted list.

Swap the first with 

minimum 



6. For each iteration, indexing starts from the first unsorted element. Step 

1 to 3 are repeated until all the elements are placed at their correct 

positions. 

 

ALGORITHM FOR SELECTION SORT 

 

voidselectionSort(intarray[], int size){ 
for (int step = 0; step < size - 1; step++) { 

intmin_idx = step; 
for (int i = step + 1; i< size; i++) { 

 
// To sort in descending order, change > to < in this line. 

// Select the minimum element in each loop. 
if (array[i] <array[min_idx]) 

min_idx = i; 
    } 

 
// put min at the correct position 

    swap(&array[min_idx], &array[step]); 
  } 

} 
voidswap(int *a, int *b){ 

int temp = *a; 
  *a = *b; 

  *b = temp; 
} 

 
// function to print an array 

voidprintArray(intarray[], int size){ 
for (inti = 0; i< size; i++) { 

cout<<array[i] <<" "; 
  } 

cout<<endl; 
} 
 

4.2.7. Strassen’ s Matrix Multiplication 

 For multiplying the two 2*2 dimension matrices Strassen's used some 
formulas in which there are seven multiplication and eighteen addition, 



subtraction, and in brute force algorithm, there is eight multiplication 
and four addition. 

 The utility of Strassen's formula is shown by its asymptotic superiority 
when order n of matrix reaches infinity. Let us consider two 
matrices A and B, n*n dimension, where n is a power of two. 

 . It can be observed that we can contain four n/2*n/2 submatrices 
from A, B and their product C. C is the resultant matrix of A and B. 

Procedure of Strassen matrix multiplication 

There are some procedures: 

1. Divide a matrix of order of 2*2 recursively till we get the matrix of 2*2. 
2. Use the previous set of formulas to carry out 2*2 matrix multiplication. 
3. In this eight multiplication and four additions, subtraction are performed. 
4. Combine the result of two matrixes to find the final product or final matrix. 

Formulas for Stassen’s matrix multiplication 

In Strassen’s matrix multiplication there are seven multiplication and four 
addition, subtraction in total. 

    1. D1 =  (a11 + a22) (b11 + b22) 

    2. D2 =  (a21 + a22).b11 

    3. D3 =  (b12 – b22).a11 

    4. D4 =  (b21 – b11).a22 

    5. D5 =  (a11 + a12).b22 

    6. D6 =  (a21 – a11) . (b11 + b12) 

    7. D7 =  (a12 – a22) . (b21 + b22) 

 

    C11 = d1 + d4 – d5 + d7 

    C12 = d3 + d5 

    C21 = d2 + d4 

    C22 = d1 + d3 – d2 – d6 

Algorithm for Strassen’s matrix multiplication 

Algorithm Strassen(n, a, b, d) 

begin  

 If n = threshold then compute 



  C = a * b is a conventional matrix. 

 Else 

  Partition a into four sub matrices  a11, a12, a21, a22. 

  Partition b into four sub matrices b11, b12, b21, b22. 

  Strassen ( n/2, a11 + a22, b11 + b22, d1) 

  Strassen ( n/2, a21 + a22, b11, d2) 

  Strassen ( n/2, a11, b12 – b22, d3) 

  Strassen ( n/2, a22, b21 – b11, d4) 

  Strassen ( n/2, a11 + a12, b22, d5) 

  Strassen (n/2, a21 – a11, b11 + b22, d6) 

  Strassen (n/2, a12 – a22, b21 + b22, d7) 

 

  C = d1+d4-d5+d7     d3+d5 

  d2+d4           d1+d3-d2-d6   

   

 end if 

  

 return (C) 

end. 
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5.1 GREEDY METHOD : 

5.1.1. INTRODUCTION: 

 The greedy method is a simple strategy of progressively building up a 
solution,one element at a time, by choosing the best possible element at 
each stage. At each stage, a decision is made regarding whether or not a 
particular input is in an optimal solution.  
 

 This is done by considering the inputs in an order determined by 
some selection procedure. If the inclusion of the next input, into the 
partially constructed optimal solution will result in an infeasible 

solution then this input is not added to the partial solution. 
  The selection procedure itself is based on some optimization measure. 

Several optimization measures are plausible for a given problem. Most 
of them, however, will result  in  algorithms  that  generate  sub-
optimal  solutions.  This  version  of  greedy technique is called subset 
paradigm. Some problems like Knapsack, Job sequencing with deadlines 
and minimum cost spanning trees are based on subset paradigm. 

 
 For the problems that make decisions by considering the inputs in 

some order, each decision is made using an optimization criterion that 
can be computed using decisions already made. This version of greedy 
method is ordering paradigm. Some problems like optimal storage on 
tapes, optimal merge patterns and single source shortest path are 
based on ordering paradigm. 

 
 
CONTROL ABSTRACTION 

 
Algorithm Greedy (a, n) 
// a(1 : n) contains the „n‟ inputs 
{ 

solution := ; // initialize the solution to empty 
for i:=1 to n do 
{ 

x := select (a); 
if  feasible (solution, x) then 

solution := Union (Solution, x); 
} 
return solution; 

} 
 

 Procedure Greedy describes the essential way that a greedy based 
algorithm will look, once a particular problem is chosen and the 
functions select, feasible and union are properly implemented. 

 The function select selects an input from „a‟, removes it and assigns its 

value to„x‟.  
Feasible is a Boolean valued function, which determines if „x‟ can be 

included intothe solution vector.  
 The function Union combines „x‟ with solution and updates the objective  

function. 
 



 
 
 
 
 
 5.1.2. KNAPSACK PROBLEM 
 

 

 Let us apply the greedy method to solve the knapsack problem. We are given 

„n‟  
objects and a knapsack. 

 The object „i‟ has a weight wi and the knapsack has a capacity  
„m‟. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit 

of pi  
xi is earned. The objective is to fill the knapsack that maximizes the total profit 
earned. 

 Since the knapsack capacity is „m‟, we require the total weight of all chosen 
objects to be at most „m‟. The problem is stated as: 

 
n 

maximize   
i  1 

n 
subject to   

i 1 

 
 

pi  xi 
 
 

ai  xi M  where, 0 <xi <1 and 1 <i <n 



 
The profits and weights are positive numbers. 

 
 
Algorithm 

 
If the objects are already been sorted into non-increasing 
order of p[i] / w[i] then the algorithm given below obtains 
solutions corresponding to this strategy. 
 
Algorithm GreedyKnapsack (m, n) 

// P[1 : n] and w[1 : n] contain the profits 

and weights respectively of // Objects 

ordered so that p[i] / w[i] > p[i + 1] / w[i 

+ 1].  

// m is the knapsack size and x[1: n] is the 

solution vector. 

{ 
for i := 1 to n do x[i] := 0.0 // initialize x 
U := m; 
for i := 1 to n do 
{ 

i
f
 
 (w(i) > U) then break;  
x
 
[
i
]
 
:
=
 
1
.
0
;
 
U
 
:
=
 
U
 
-
 
w
[
i
]
; 



} 
if (i <n) then x[i] := U / w[i]; 

} 
 
 
Running time: 
 
The objects are to be sorted into non-decreasing order of pi / wi ratio. But 
if we 
disregard the time to initially sort the objects, the algorithm requires only 
O(n) time. 

 
 
Example: 

 

Consider the following instance of the knapsack problem: n 
= 3, m = 20, (p1, p2, p3) = (25, 24, 15) and (w1, w2, w3) = 
(18, 15, 10). 

 
 
 
 

 

considered the objects in the order of the ratio pi / wi . 
 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 
 
Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the 
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 units 
of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the profit 
earned is 7.5.  
 

This solution is the optimal solution. 
 

 

============================= 

 

5.1.3. JOB SEQUENCING WITH DEADLINES 

  

Let us consider, a set of n given jobs which are associated with deadlines and profit 
is earned, if a job is completed by its deadline. 

 These jobs need to be ordered in such a way that there is maximum profit. 

 It may happen that all of the given jobs may not be completed within their 
deadlines. 



 Assume, deadline of ith job Ji is di and the profit received from this job is pi.  

 Hence, the optimal solution of this algorithm is a feasible solution with maximum 
profit. 

 Thus, D(i)>0D(i)>0 for 1⩽i⩽n1⩽i⩽n. 

 Initially, these jobs are ordered according to profit, 
i.e. p1⩾p2⩾p3⩾...⩾pnp1⩾p2⩾p3⩾...⩾pn. 

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k) 
D(0) := J(0) := 0  
k := 1  
J(1) := 1   // means first job is selected  
for i = 2 … n do  
   r := k  
   while D(J(r)) > D(i) and D(J(r)) ≠ r do  
      r := r – 1  
   if D(J(r)) ≤ D(i) and D(i) > r then  
      for l = k … r + 1 by -1 do  
         J(l + 1) := J(l)  
         J(r + 1) := i 
         k := k + 1  

 Let us consider a set of given jobs as shown in the following table.  

 We have to find a sequence of jobs, which will be completed within their deadlines 
and will give maximum profit.  

 Each job is associated with a deadline and profit. 

 

Solution 

 To solve this problem, the given jobs are sorted according to their profit in a 
descending order.  

 Hence, after sorting, the jobs are ordered as shown in the following table. 

Job J1 J2 J3 J4 J5 

Deadline 2 1 3 2 1 

Profit 60 100 20 40 20 

Job J2 J1 J4 J3 J5 

Deadline 1 2 2 3 1 



 

From this set of jobs, first we select J2, as it can be completed within its deadline and 
contributes maximum profit. 

 Next, J1 is selected as it gives more profit compared to J4. 

 In the next clock, J4 cannot be selected as its deadline is over, hence J3 is selected as 
it executes within its deadline. 

 The job J5 is discarded as it cannot be executed within its deadline. 

Thus, the solution is the sequence of jobs (J2, J1, J3), which are being executed within their 
deadline and gives maximum profit. 

Total profit of this sequence is 100 + 60 + 20 = 180. 

 

 

=============================== 

5.1.4. OPTIMAL STORAGE ON TAPES 

 Input: We are given ‘n’ problem that are to be stored on computer tape of length 
L and the length of program i is Li 

 Such that 1 ≤i≤ n and Σ 1≤k≤j Li≤ 1 

 Output: A permutation from all n! For the n programs so that when they are 
stored on tape in the order the MRT is minimized. 

 Example: 

 Let n = 3, (l1, l2, l3) = (8, 12, 2). As n = 3, there are 3! =6 possible ordering. 

 All these orderings and their respective d value are given below: 

Profit 100 60 40 20 20 

Ordering d (i) Value 

1, 2, 3 8 + (8+12) + (8+12+2) 50 

1, 3, 2 8 + 8 + 2 + 8 + 2 + 12 40 



  

The optimal ordering is 3, 1, 2. 

 The greedy method is now applied to solve this problem. 

  It requires that the programs are stored in non-decreasing order which can be 
done in O (nlogn) time. 

 

Greedy solution: 

i. Make tape empty 

ii. Fori = 1 to n do; 

iii. Grab the next shortest path 

iv. Put it on next tape. 

The algorithm takes the best shortest term choice without checking to see whether it is 
a big long term decision. 

Algorithm: 

 

2, 1, 3 12 + 12 + 8 +12 + 8 + 2 54 

2, 3, 1 12 + 12 +2 +12 + 2 + 8 48 

3, 1, 2 2 + 2 + 8 + 2 + 8+ 12 34 

3, 2, 1 2 + 2 +12 + 2 + 12 + 8 38 



=============================== 

5.1.5. OPTIMAL MERGE PATTERNS 

 Optimal merge pattern is a pattern that relates to the merging of two or more 

sorted files in a single sorted file. This type of merging can be done by the two-way 

merging method. 

 If we have two sorted files containing n and m records respectively then they could 

be merged together, to obtain one sorted file in time O (n+m). 

 There are many ways in which pairwise merge can be done to get a single sorted file. 

Different pairings require a different amount of computing time. 

 The main thing is to pairwise merge the n sorted files so that the number of 

comparisons will be less. 

The formula of external merging cost is: 

 
 

Where, f (i) represents the number of records in each file and d 

(i) represents the depth. 

Algorithm for optimal merge pattern 

Algorithm Tree(n) 

//list is a global list of n single node  

{ 

 For  i=1 to i= n-1 do 

 { 

  // get a new tree node 

  Pt: new treenode;  

  // merge two trees with smallest length 

  (Pt = lchild) = least(list);  

  (Pt = rchild) = least(list);  

  (Pt =weight) = ((Pt = lchild) = weight) = ((Pt = 

rchild) = weight); 

  Insert (list , Pt); 

 } 

 // tree left in list  

 Return least(list);  

} 

Example: 

 Given a set of unsorted files: 5, 3, 2, 7, 9, 13 

 Now, arrange these elements in ascending order: 2, 3, 5, 7, 9, 13 



 After this, pick two smallest numbers and repeat this until we left with only one 

number. 

Now follow following steps: 

Step 1: Insert 2, 3 

 
 

Step 2: 

 
 

Step 3: Insert 5 

 
 

Step 4: Insert 13 

 
 



Step 5: Insert 7 and 9 

 
 

Step 6: 

 
 

So, The merging cost = 5 + 10 + 16 + 23 + 39 = 93 

=============================== 

 

5.2 MINIMUM COST SPANNING TREE 

 A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted 

undirected graph that connects all the vertices together with the minimum possible 

total edge weight.  

 To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. 

 If there are n number of vertices, the spanning tree should have n - 1 number of 

edges.  

5.2.1. PRIM’S ALGORITHM : 

In Prim’s Algorithm we grow the spanning tree from a starting position.  



Algorithm Steps: 

 Maintain two disjoint sets of vertices. One containing vertices that are in the growing 
spanning tree and other that are not in the growing spanning tree. 

 Select the cheapest vertex that is connected to the growing spanning tree and is not in 
the growing spanning tree and add it into the growing spanning tree. This can be done 
using Priority Queues. Insert the vertices, that are connected to growing spanning tree, 
into the Priority Queue. 

 Check for cycles. To do that, mark the nodes which have been already selected and 
insert only those nodes in the Priority Queue that are not marked. 

Consider the example below: 

 

5.2.2. KRUSKAL’S ALGORITHM 

 Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing 
spanning tree. 

 Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which 
has least weight and add it to the growing spanning tree. 

Algorithm Steps: 

 Sort the graph edges with respect to their weights. 
 Start adding edges to the MST from the edge with the smallest weight until the edge of 

the largest weight. 

 Only add edges which doesn't form a cycle , edges which connect only disconnected 
components. 

 Consider following example: 



  

=============================== 

 

  

 

 5.3. DYNAMIC PROBLEM 

5.3.1. INTRODUCTION 

 Dynamic Programming solves problems by combining the solutions of subproblems.  

 Moreover, Dynamic Programming algorithm solves each sub-problem just once and then 

saves its answer in a table, thereby avoiding the work of re-computing the answer every 

time. 
The steps in a dynamic programming solution are: 
  
  Verify that the principle of optimality holds 
  
  Set up the dynamic-programming recurrence 

equations 
  
   Solve the dynamic-programming recurrence 

equations for the value of the 
 optimal solution. 



  
   Perform a trace back step in which the solution itself 

is constructed. 
 

=============================== 

5.3.2. ALL PAIRS SHORTEST PATH 

 The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used to 
find all pair shortest path problem from a given weighted graph.  

 As a result of this algorithm, it will generate a matrix, which will represent the minimum 
distance from any node to all other nodes in the graph. 

 

 At first the output matrix is same as given cost matrix of the graph. After that the output 
matrix will be updated with all vertices k as the intermediate vertex. 

 The time complexity of this algorithm is O(V3), here V is the number of vertices in the 
graph. 

 Input − The cost matrix of the graph. 

0 3 6 ∞ ∞ ∞ ∞ 
3 0 2 1 ∞ ∞ ∞ 
6 2 0 1 4 2 ∞ 
∞ 1 1 0 2 ∞ 4 
∞ ∞ 4 2 0 2 1 
∞ ∞ 2 ∞ 2 0 1 
∞ ∞ ∞ 4 1 1 0 

Output − Matrix of all pair shortest path. 

0 3 4 5 6 7 7 
3 0 2 1 3 4 4 
4 2 0 1 3 2 3 
5 1 1 0 2 3 3 
6 3 3 2 0 2 1 
7 4 2 3 2 0 1 
7 4 3 3 1 1 0 



Algorithm 

floydWarshal(cost) 

Input − The cost matrix of given Graph. 

Output − Matrix to for shortest path between any vertex to any vertex. 

Begin 
   for k := 0 to n, do 
      for i := 0 to n, do 
         for j := 0 to n, do 
            if cost[i,k] + cost[k,j] < cost[i,j], then 
               cost[i,j] := cost[i,k] + cost[k,j] 
            done 
         done 
      done 
      display the current cost matrix 
End 

 

 

5.3.3. SINGLE SOURCE SHORTEST PATH  

 Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 

weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 

for each edge (u, v) Є E). 

Algorithm: Dijkstra’s-Algorithm (G, w, s) 

for each vertex v Є G.V   

v.d := ∞  

   v.∏ := NIL  

s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d>u.d + w(u, v)  

v.d := u.d + w(u, v)  

         v.∏ := u 

Example 

 Let us consider vertex 1 and 9 as the start and destination vertex 
respectively. Initially, all the vertices except the start vertex are marked by 
∞ and the start vertex is marked by 0. 

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 



1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

 Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

 1→ 3→ 7→ 8→ 6→ 9 

 This path is determined based on predecessor information. 

  

  
  

 

=============================== 



5.3.4. TRAVELLING SALESMAN PROBLEM 

 In the traveling salesman Problem, a salesman must visits n cities.  

 We can say that salesman wishes to make a tour or Hamiltonian cycle, visiting each city 
exactly once and finishing at the city he starts from. There is a non-negative cost c (i, j) to 
travel from the city i to city j.  

 The goal is to find a tour of minimum cost. We assume that every two cities are 
connected. Such problems are called Traveling-salesman problem (TSP). 

 We can model the cities as a complete graph of n vertices, where each vertex represents 
a city. 

 Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted 

edges.  

 An edge e(u, v) represents that vertices u and v are connected. Distance between 

vertex u and v is d(u, v), which should be non-negative. 

 When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

 Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end 
at j. We should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j) 

Where 

i∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j) 

wherei∈Sandi≠jC(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sandi≠j 

Algorithm: Traveling-Salesman-Problem 
C ({1}, 1) = 0  
for s = 2 to n do  
   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  
      C (S, 1) = ∞  
   for all j Є S and j ≠ 1  
      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  
Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  

In the following example, we will illustrate the steps to solve the travelling salesman problem. 

  

 From the above graph, the following table is prepared. 



 1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

 S = Φ 

 Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5 

 Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6 

 Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8 

  

 The minimum cost path is 35. 

 Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2] 

=============================== 

 

 

 

 

5.4. GRAPH 

5.4.1. GRAPH AND TERMINOLOGY 

 A graph is a pictorial representation of a set of objects where some pairs of objects 
are connected by links.  

 The interconnected objects are represented by points termed as vertices, and the 
links that connect the vertices are called edges. 

 Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the 
set of edges, connecting the pairs of vertices. Take a look at the following graph − 



 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Graph Data Structure 

 Mathematical graphs can be represented in data structure.  

 We can represent a graph using an array of vertices and a two-dimensional array of 
edges.  

 Before we proceed further, let's familiarize ourselves with some important terms − 

 Vertex − Each node of the graph is represented as a vertex. In the following 
example, the labeled circle represents vertices. Thus, A to G are vertices. We can 
represent them using an array as shown in the following image. Here A can be 
identified by index 0. B can be identified using index 1 and so on. 

 Edge − Edge represents a path between two vertices or a line between two vertices. 
In the following example, the lines from A to B, B to C, and so on represents edges. 
We can use a two-dimensional array to represent an array as shown in the following 
image. Here AB can be represented as 1 at row 0, column 1, BC as 1 at row 1, 
column 2 and so on, keeping other combinations as 0. 

 Adjacency − Two node or vertices are adjacent if they are connected to each other 
through an edge. In the following example, B is adjacent to A, C is adjacent to B, and 
so on. 

 Path − Path represents a sequence of edges between the two vertices. In the 
following example, ABCD represents a path from A to D. 



 

Basic Operations 

Following are basic primary operations of a Graph − 

 Add Vertex − Adds a vertex to the graph. 

 Add Edge − Adds an edge between the two vertices of the graph. 

 Display Vertex − Displays a vertex of the graph. 

Adjacency Matrix   

 It is a two dimensional array with Boolean flags. As an example, we can represent the 

edges for the above graph using the following adjacency matrix 

 

o In the given graph, A is connected with B, C and D nodes, so adjacency matrix 

will have 1s in the ‘A’ row for the ‘B’, ‘C’ and ‘D’ column 



Adjacency List   

 It is an array of linked list nodes. In other words, it is like a list whose elements are a 

linked list.  

 For the given graph example, the edges will be represented by the below adjacency 

list:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.4.2. CONNECTED GRAPH 

 A graph G is said to be connected if there exists a path between every pair of 
vertices. There should be at least one edge for every vertex in the graph.  

 So that we can say that it is connected to some other vertex at the other side of the 
edge. 

Example 

In the following graph, each vertex has its own edge connected to other edge. Hence it is a 
connected graph. 

 

Disconnected Graph 

A graph G is disconnected, if it does not contain at least two connected vertices. 

Example 1 

The following graph is an example of a Disconnected Graph, where there are two 
components, one with ‘a’, ‘b’, ‘c’, ‘d’ vertices and another with ‘e’, ’f’, ‘g’, ‘h’ vertices. 

 



The two components are independent and not connected to each other. Hence it is called 
disconnected graph. 

Example 2 

 

In this example, there are two independent components, a-b-f-e and c-d, which are not 
connected to each other. Hence this is a disconnected graph. 

=============================== 

5.4.3. GRAPH TRAVERSAL TECHNIQUES 

They can also be used to find out whether a node is reachable from a given node or not.    

Depth First Search (DFS)  

The aim of DFS algorithm is to traverse the graph in such a way that it tries to go far from 
the root node. 



 

 If we do the depth first traversal of the above graph and print the visited node, it will 

be “A B E F C D”.  

 DFS visits the root node and then its children nodes until it reaches the end node, i.e. 

E and F nodes, then moves up to the parent nodes.  

BREADTH FIRST SEARCH 

 The aim of BFS algorithm is to traverse the graph as close as possible to the root 

node. Queue is used in the implementation of the breadth first search. 

 If we do the breadth first traversal of the above graph and print the visited node as 

the output, it will print the following output. “A B C D E F”.  
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